3.8.49 \(\int \frac {1}{x^3 \sqrt {a+b x^2+c x^4}} \, dx\)

Optimal. Leaf size=72 \[ \frac {b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{4 a^{3/2}}-\frac {\sqrt {a+b x^2+c x^4}}{2 a x^2} \]

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 72, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1114, 730, 724, 206} \begin {gather*} \frac {b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{4 a^{3/2}}-\frac {\sqrt {a+b x^2+c x^4}}{2 a x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^3*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

-Sqrt[a + b*x^2 + c*x^4]/(2*a*x^2) + (b*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(4*a^(3/2)
)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 730

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m + 1)
*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[(2*c*d - b*e)/(2*(c*d^2 - b*d*e + a*e
^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c,
 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m + 2*p + 3, 0]

Rule 1114

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)*(a +
 b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {1}{x^3 \sqrt {a+b x^2+c x^4}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{x^2 \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )\\ &=-\frac {\sqrt {a+b x^2+c x^4}}{2 a x^2}-\frac {b \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{4 a}\\ &=-\frac {\sqrt {a+b x^2+c x^4}}{2 a x^2}+\frac {b \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x^2}{\sqrt {a+b x^2+c x^4}}\right )}{2 a}\\ &=-\frac {\sqrt {a+b x^2+c x^4}}{2 a x^2}+\frac {b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{4 a^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 72, normalized size = 1.00 \begin {gather*} \frac {b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{4 a^{3/2}}-\frac {\sqrt {a+b x^2+c x^4}}{2 a x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

-1/2*Sqrt[a + b*x^2 + c*x^4]/(a*x^2) + (b*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(4*a^(3/
2))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.20, size = 76, normalized size = 1.06 \begin {gather*} -\frac {b \tanh ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {a}}-\frac {\sqrt {a+b x^2+c x^4}}{\sqrt {a}}\right )}{2 a^{3/2}}-\frac {\sqrt {a+b x^2+c x^4}}{2 a x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(x^3*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

-1/2*Sqrt[a + b*x^2 + c*x^4]/(a*x^2) - (b*ArcTanh[(Sqrt[c]*x^2)/Sqrt[a] - Sqrt[a + b*x^2 + c*x^4]/Sqrt[a]])/(2
*a^(3/2))

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 179, normalized size = 2.49 \begin {gather*} \left [\frac {\sqrt {a} b x^{2} \log \left (-\frac {{\left (b^{2} + 4 \, a c\right )} x^{4} + 8 \, a b x^{2} + 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (b x^{2} + 2 \, a\right )} \sqrt {a} + 8 \, a^{2}}{x^{4}}\right ) - 4 \, \sqrt {c x^{4} + b x^{2} + a} a}{8 \, a^{2} x^{2}}, -\frac {\sqrt {-a} b x^{2} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (b x^{2} + 2 \, a\right )} \sqrt {-a}}{2 \, {\left (a c x^{4} + a b x^{2} + a^{2}\right )}}\right ) + 2 \, \sqrt {c x^{4} + b x^{2} + a} a}{4 \, a^{2} x^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/8*(sqrt(a)*b*x^2*log(-((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 + 4*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(a) + 8*
a^2)/x^4) - 4*sqrt(c*x^4 + b*x^2 + a)*a)/(a^2*x^2), -1/4*(sqrt(-a)*b*x^2*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(b
*x^2 + 2*a)*sqrt(-a)/(a*c*x^4 + a*b*x^2 + a^2)) + 2*sqrt(c*x^4 + b*x^2 + a)*a)/(a^2*x^2)]

________________________________________________________________________________________

giac [A]  time = 0.43, size = 114, normalized size = 1.58 \begin {gather*} -\frac {b \arctan \left (-\frac {\sqrt {c} x^{2} - \sqrt {c x^{4} + b x^{2} + a}}{\sqrt {-a}}\right )}{2 \, \sqrt {-a} a} + \frac {{\left (\sqrt {c} x^{2} - \sqrt {c x^{4} + b x^{2} + a}\right )} b + 2 \, a \sqrt {c}}{2 \, {\left ({\left (\sqrt {c} x^{2} - \sqrt {c x^{4} + b x^{2} + a}\right )}^{2} - a\right )} a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

-1/2*b*arctan(-(sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2 + a))/sqrt(-a))/(sqrt(-a)*a) + 1/2*((sqrt(c)*x^2 - sqrt(c*x^4
 + b*x^2 + a))*b + 2*a*sqrt(c))/(((sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2 + a))^2 - a)*a)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 63, normalized size = 0.88 \begin {gather*} \frac {b \ln \left (\frac {b \,x^{2}+2 a +2 \sqrt {c \,x^{4}+b \,x^{2}+a}\, \sqrt {a}}{x^{2}}\right )}{4 a^{\frac {3}{2}}}-\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{2 a \,x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(c*x^4+b*x^2+a)^(1/2),x)

[Out]

-1/2*(c*x^4+b*x^2+a)^(1/2)/a/x^2+1/4*b/a^(3/2)*ln((b*x^2+2*a+2*(c*x^4+b*x^2+a)^(1/2)*a^(1/2))/x^2)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more details)Is 4*a*c-b^2 positive, negative or zero?

________________________________________________________________________________________

mupad [B]  time = 4.48, size = 56, normalized size = 0.78 \begin {gather*} \frac {b\,\mathrm {atanh}\left (\frac {\frac {b\,x^2}{2}+a}{\sqrt {a}\,\sqrt {c\,x^4+b\,x^2+a}}\right )}{4\,a^{3/2}}-\frac {\sqrt {c\,x^4+b\,x^2+a}}{2\,a\,x^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^3*(a + b*x^2 + c*x^4)^(1/2)),x)

[Out]

(b*atanh((a + (b*x^2)/2)/(a^(1/2)*(a + b*x^2 + c*x^4)^(1/2))))/(4*a^(3/2)) - (a + b*x^2 + c*x^4)^(1/2)/(2*a*x^
2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{3} \sqrt {a + b x^{2} + c x^{4}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral(1/(x**3*sqrt(a + b*x**2 + c*x**4)), x)

________________________________________________________________________________________